Understanding Cryptography by Christof Paar and Jan Pelzl - Chapter 1 Solutions - Ex1.10
- 1 min- Return to index
- Exercise 1.1
- Exercise 1.2
- Exercise 1.3
- Exercise 1.4
- Exercise 1.5
- Exercise 1.6
- Exercise 1.7
- Exercise 1.8
- Exercise 1.9
- Exercise 1.10
- Exercise 1.11
- Exercise 1.12
- Exercise 1.13
- Exercise 1.14
Exercise 1.10
Find all integers \(n\) between \(0 \le n \lt m\) that are relatively prime to \(m\) for \(m = 4,5,9,26\). We denote the number of integers \(n\) which fulfill the condition by \(\phi(m)\), e.g. \(\phi(3) = 2\). This function is called “Euler’s phi function”. What is \(\phi(m)\) for \(m = 4,5,9,26\)?
Solution
I haven’t yet verified this solution independently. If you spot any mistakes, please leave a comment in the Disqus box at the bottom of the page.
\(m = 4\):
\[\mathrm{gcd}(0, 4) = 4\] \[\mathrm{gcd}(1, 4) = 1\] \[\mathrm{gcd}(2, 4) = 2\] \[\mathrm{gcd}(3, 4) = 1\] \[\phi(4) = 2\]\(m = 5\):
\[\mathrm{gcd}(0, 5) = 5\] \[\mathrm{gcd}(1, 5) = 1\] \[\mathrm{gcd}(2, 5) = 1\] \[\mathrm{gcd}(3, 5) = 1\] \[\mathrm{gcd}(4, 5) = 1\] \[\phi(5) = 4\]\(m = 9\):
\[\mathrm{gcd}(0, 9) = 9\] \[\mathrm{gcd}(1, 9) = 1\] \[\mathrm{gcd}(2, 9) = 1\] \[\mathrm{gcd}(3, 9) = 3\] \[\mathrm{gcd}(4, 9) = 1\] \[\mathrm{gcd}(5, 9) = 1\] \[\mathrm{gcd}(6, 9) = 3\] \[\mathrm{gcd}(7, 9) = 1\] \[\mathrm{gcd}(8, 9) = 1\] \[\phi(9) = 6\]\(m = 26\):
\[\mathrm{gcd}(0, 26) = 26\] \[\mathrm{gcd}(1, 26) = 1\] \[\mathrm{gcd}(2, 26) = 2\] \[\mathrm{gcd}(3, 26) = 1\] \[\mathrm{gcd}(4, 26) = 2\] \[\mathrm{gcd}(5, 26) = 1\] \[\mathrm{gcd}(6, 26) = 2\] \[\mathrm{gcd}(7, 26) = 1\] \[\mathrm{gcd}(8, 26) = 2\] \[\mathrm{gcd}(9, 26) = 1\] \[\mathrm{gcd}(10, 26) = 2\] \[\mathrm{gcd}(11, 26) = 1\] \[\mathrm{gcd}(12, 26) = 2\] \[\mathrm{gcd}(13, 26) = 13\] \[\mathrm{gcd}(14, 26) = 2\] \[\mathrm{gcd}(15, 26) = 1\] \[\mathrm{gcd}(16, 26) = 2\] \[\mathrm{gcd}(17, 26) = 1\] \[\mathrm{gcd}(18, 26) = 2\] \[\mathrm{gcd}(19, 26) = 1\] \[\mathrm{gcd}(20, 26) = 2\] \[\mathrm{gcd}(21, 26) = 1\] \[\mathrm{gcd}(22, 26) = 2\] \[\mathrm{gcd}(23, 26) = 1\] \[\mathrm{gcd}(24, 26) = 2\] \[\mathrm{gcd}(25, 26) = 1\] \[\phi(26) = 12\]