Understanding Cryptography by Christof Paar and Jan Pelzl - Chapter 1 Solutions - Ex1.6
- 1 min- Return to index
- Exercise 1.1
- Exercise 1.2
- Exercise 1.3
- Exercise 1.4
- Exercise 1.5
- Exercise 1.6
- Exercise 1.7
- Exercise 1.8
- Exercise 1.9
- Exercise 1.10
- Exercise 1.11
- Exercise 1.12
- Exercise 1.13
- Exercise 1.14
Exercise 1.6
Compute without a calculator:
- 1/5 mod 13
- 1/5 mod 7
- 3 · 2/5 mod 7
Solution
I haven’t yet verified this solution independently. If you spot any mistakes, please leave a comment in the Disqus box at the bottom of the page.
In order to perform a division by \(x\), we must find the multiplicative inverse \(x^{-1}\) and multiply by it.
1.
\[1 \div 5\,\mathrm{mod}\,13 \equiv 1 \times 5^{-1}\,\mathrm{mod}\,13 \\ \mathsf{where}\,5 \times 5^{-1} \,\mathrm{mod}\,13 \equiv 1\,\mathrm{mod}\,13\] \[5 \times 8\,\mathrm{mod}\,13 \equiv 1\,\mathrm{mod}\,13 \\ 5^{-1}\,\mathrm{mod}\,13 \equiv 8\,\mathrm{mod}\,13\] \[1 \div 5\,\mathrm{mod}\,13 \equiv 1 \times 8\,\mathrm{mod}\,13 \equiv 8\,\mathrm{mod}\,13\]2.
\[1 \div 5\,\mathrm{mod}\,7 \equiv 1 \times 5^{-1}\,\mathrm{mod}\,7 \\ \mathsf{where}\,5 \times 5^{-1} \,\mathrm{mod}\,7 \equiv 1\,\mathrm{mod}\,7\] \[5 \times 3\,\mathrm{mod}\,7 \equiv 1\,\mathrm{mod}\,7 \\ 5^{-1}\,\mathrm{mod}\,7 \equiv 3\,\mathrm{mod}\,7\] \[1 \div 5\,\mathrm{mod}\,7 \equiv 1 \times 3\,\mathrm{mod}\,7 \equiv 3\,\mathrm{mod}\,7\]3.
\[3 \times 2 \div 5\,\mathrm{mod}\,7 \equiv 3 \times 2 \times 5^{-1}\,\mathrm{mod}\,7 \\ \mathsf{where}\,2 \times 5^{-1} \,\mathrm{mod}\,7 \equiv 1\,\mathrm{mod}\,7\] \[5 \times 3\,\mathrm{mod}\,7 \equiv 1\,\mathrm{mod}\,7 \\ 5^{-1}\,\mathrm{mod}\,7 \equiv 3\,\mathrm{mod}\,7\] \[3 \times 2 \div 5\,\mathrm{mod}\,7 \equiv 3 \times 2 \times 3\,\mathrm{mod}\,7 \equiv 4\,\mathrm{mod}\,7 \\ \mathsf{because}\,3 \times 2 \times 3\,\mathrm{mod}\,7 \equiv 18\,\mathrm{mod}\,7 \equiv 4\,\mathrm{mod}\,7\]